编辑“︁
2.3.7/(1029/1024)
”︁
Administrator
(
留言
|
贡献
)
2026年1月21日 (三) 14:13的版本
(
差异
)
←上一版本
|
最后版本
(
差异
) |
下一版本→
(
差异
)
跳转到导航
跳转到搜索
警告:您正在编辑该页面的旧版本。
如果您发布该更改,该版本后的所有更改都会丢失。
警告:
您没有登录。如果您进行任何编辑,您的IP地址会公开展示。如果您
登录
或
创建账号
,您的编辑会以您的用户名署名,此外还有其他益处。
反垃圾检查。
不要
加入这个!
{| style="float:right; border:1px solid black; width:270px; background-color: #f0f0f0; border-collapse: collapse;" !colspan="2" | 8/7-3ed3/2律 |- ! 子群 | style="background-color: #FFFFFF; font-weight: bold;" | 2.3.7 |- ! 音差 | style="background-color: #FFFFFF; font-weight: bold;" | 1029/1024 |- ! 映射 | style="background-color: #FFFFFF; font-weight: bold;" | [1 1 3; 0 3 -1] |- ! 平均律 | style="background-color: #FFFFFF; font-weight: bold;" | 36 & 41 |- ! 生程 | style="background-color: #FFFFFF; font-weight: bold;" | 2, 8/7 |} '''Slendric''', alternatively and originally named '''wonder''' by [[Margo Schulter]]<ref>[https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_76975.html#77043 Yahoo! Tuning Group | ''Music Theory (was Re: How to keep discussions on-topic)''], and [https://yahootuninggroupsultimatebackup.github.io/tuning/topicId_87455.html#88377 Yahoo! Tuning Group | ''The "best" scale.'']</ref>, or systematically '''gamelic''', is a [[regular temperament]] generated by [[8/7]], so that three of them stack to [[3/2]]. Thus the gamelisma, [[1029/1024]], is tempered out, which defines the [[gamelismic clan]]. Since 1029/1024 is a relatively small comma (8.4¢), and the error is distributed over a few intervals, slendric is quite an accurate temperament (approximating many intervals within 1 or 2 cents in optimal tunings). The disadvantage, if you want to think of it that way, is that approximations to the [[5/1|5th]] [[harmonic]] do not occur until you go a large number of generators away from the unison. In other words, the 5th harmonic must have a large [[complexity]]. Possible [[extension]]s of slendric to the full [[7-limit]] include [[mothra]], [[rodan]], and [[guiron]], where mothra tempers out [[81/80]], placing 5/1 at 12 generators (4 fifths) up; rodan tempers out [[245/243]], placing 5/1 at 17 generators up; and guiron tempers out the schisma, [[32805/32768]], placing 5/1 at 24 generators (8 fifths) down. [[Weak extension]]s such as [[miracle]] and [[valentine]] are somewhat more efficient, but they change the generator chain. From there, it is easy to extend these temperaments to the [[11-limit]] since 1029/1024 factorizes in this limit into ([[385/384]])⋅([[441/440]]), and so the logical extension of slendric is to temper out both commas; this places the interval of [[55/32]] at four generators up. Alternatively, giving 5/1 an independent generator and then tempering out 385/384 and 441/440 results in the rank-3 temperament [[portent]], the natural 11-limit [[expansion]] of slendric. Portent is [[support]]ed by the slendric extensions listed above. This article concerns the basic [[2.3.7 subgroup]] temperament, slendric itself. For technical data, see [[Gamelismic clan #Slendric]].
摘要:
请注意,所有对律学维基的贡献均被视为依照知识共享署名-相同方式共享发表(详情请见
律学维基:著作权
)。如果您不希望您的文字作品被随意编辑和分发传播,请不要在此提交。
您同时也向我们承诺,您提交的内容为您自己所创作,或是复制自公共领域或类似自由来源。
未经许可,请勿提交受著作权保护的作品!
取消
编辑帮助
(在新窗口中打开)
导航菜单
个人工具
未登录
讨论
贡献
创建账号
登录
命名空间
页面
讨论
大陆简体
查看
阅读
编辑
编辑源代码
查看历史
更多
搜索
导航
首页
最近更改
随机页面
MediaWiki帮助
特殊页面
工具
链入页面
相关更改
页面信息